Background image mask

LSSS 2016-2017


Life Sciences Seminar Series


Back to seminar list

Mike Sheetz

Mecanobiology Institute, Singapore

Mechanosensing in growth

Selected Publications

Integrin and cadherin clusters: A robust way to organize adhesions for cell mechanics.Changede R, Sheetz M
Bioessays 2017 Jan; 39(1):1-12


Recent studies at the nanometer scale have revealed that relatively uniform clusters of adhesion proteins (50-100 nm) constitute the modular units of cell adhesion sites in both cell-matrix and cell-cell adhesions. Super resolution microscopy and membrane protein diffusion studies both suggest that even large focal adhesions are formed of 100 nm clusters that are loosely aggregated. Clusters of 20-50 adhesion molecules (integrins or cadherins) can support large forces through avidity binding interactions but can also be disassembled or endocytosed rapidly. Assembly of the clusters of integrins is force-independent and involves gathering integrins at ligand binding sites where they are stabilized by cytoplasmic adhesion proteins that crosslink the integrin cytoplasmic tails plus connect the clusters to the cell cytoskeleton. Cooperative-signaling events can occur in a single cluster without cascading to other clusters. Thus, the clusters appear to be very important elements in many cellular processes and can be considered as a critical functional module.

Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression.Nakazawa N, Sathe AR, Shivashankar GV, Sheetz MP
Proc Natl Acad Sci U S A 2016 Nov 1; 113(44):E6813-E6822


Substrate rigidity affects many physiological processes through mechanochemical signals from focal adhesion (FA) complexes that subsequently modulate gene expression. We find that shuttling of the LIM domain (domain discovered in the proteins, Lin11, Isl-1, and Mec-3) protein four-and-a-half LIM domains 2 (FHL2) between FAs and the nucleus depends on matrix mechanics. In particular, on soft surfaces or after the loss of force, FHL2 moves from FAs into the nucleus and concentrates at RNA polymerase (Pol) II sites, where it acts as a transcriptional cofactor, causing an increase in p21 gene expression that will inhibit growth on soft surfaces. At the molecular level, shuttling requires a specific tyrosine in FHL2, as well as phosphorylation by active FA kinase (FAK). Thus, we suggest that FHL2 phosphorylation by FAK is a critical, mechanically dependent step in signaling from soft matrices to the nucleus to inhibit cell proliferation by increasing p21 expression.

Nascent Integrin Adhesions Form on All Matrix Rigidities after Integrin Activation.Changede R, Xu X, Margadant F, Sheetz MP
Dev Cell 2015 Dec 7; 35(5):614-21


Integrin adhesions assemble and mature in response to ligand binding and mechanical factors, but the molecular-level organization is not known. We report that ∼100-nm clusters of ∼50 β3-activated integrins form very early adhesions under a wide variety of conditions on RGD surfaces. These adhesions form similarly on fluid and rigid substrates, but most adhesions are transient on rigid substrates. Without talin or actin polymerization, few early adhesions form, but expression of either the talin head or rod domain in talin-depleted cells restores early adhesion formation. Mutation of the integrin binding site in the talin rod decreases cluster size. We suggest that the integrin clusters constitute universal early adhesions and that they are the modular units of cell matrix adhesions. They require the association of activated integrins with cytoplasmic proteins, in particular talin and actin, and cytoskeletal contraction on them causes adhesion maturation for cell motility and growth.

Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices.Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T, Ghassemi S, Roca-Cusachs P, O'Shaughnessy B, Hone J, Sheetz MP
Nat Cell Biol 2016 Jan; 18(1):33-42


Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ∼2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.

Cyclic stretching of soft substrates induces spreading and growth.Cui Y, Hameed FM, Yang B, Lee K, Pan CQ, Park S, Sheetz M
Nat Commun 2015 Feb 23; 6:6333


In the body, soft tissues often undergo cycles of stretching and relaxation that may affect cell behaviour without changing matrix rigidity. To determine whether transient forces can substitute for a rigid matrix, we stretched soft pillar arrays. Surprisingly, 1-5% cyclic stretching over a frequency range of 0.01-10 Hz caused spreading and stress fibre formation (optimum 0.1 Hz) that persisted after 4 h of stretching. Similarly, stretching increased cell growth rates on soft pillars comparative to rigid substrates. Of possible factors linked to fibroblast growth, MRTF-A (myocardin-related transcription factor-A) moved to the nucleus in 2 h of cyclic stretching and reversed on cessation; but YAP (Yes-associated protein) moved much later. Knockdown of either MRTF-A or YAP blocked stretch-dependent growth. Thus, we suggest that the repeated pulling from a soft matrix can substitute for a stiff matrix in stimulating spreading, stress fibre formation and growth.

Appreciating force and shape—the rise of mechanotransduction in cell biology.Iskratsch T, Wolfenson H, Sheetz MP
Nat Rev Mol Cell Biol 2014 Dec; 15(12):825-33


Although the shapes of organisms are encoded in their genome, the developmental processes that lead to the final form of vertebrates involve a constant feedback between dynamic mechanical forces, and cell growth and motility. Mechanobiology has emerged as a discipline dedicated to the study of the effects of mechanical forces and geometry on cell growth and motility—for example, during cell-matrix adhesion development—through the signalling process of mechanotransduction.

YAP/TAZ as mechanosensors and mechanotransducers in regulating organ size and tumor growth.Low BC, Pan CQ, Shivashankar GV, Bershadsky A, Sudol M, Sheetz M
FEBS Lett 2014 Aug 19; 588(16):2663-70


Organ size is controlled by the concerted action of biochemical and physical processes. Although mechanical forces are known to regulate cell and tissue behavior, as well as organogenesis, the precise molecular events that integrate mechanical and biochemical signals to control these processes are not fully known. The recently delineated Hippo-tumor suppressor network and its two nuclear effectors, YAP and TAZ, shed light on these mechanisms. YAP and TAZ are proto-oncogene proteins that respond to complex physical milieu represented by the rigidity of the extracellular matrix, cell geometry, cell density, cell polarity and the status of the actin cytoskeleton. Here, we review the current knowledge of how YAP and TAZ function as mechanosensors and mechanotransducers. We also suggest that by deciphering the mechanical and biochemical signals controlling YAP/TAZ function, we will gain insights into new strategies for cancer treatment and organ regeneration.

Mechanical feedback between membrane tension and dynamics.Gauthier NC, Masters TA, Sheetz MP
Trends Cell Biol 2012 Oct; 22(10):527-35


The plasma membrane represents a physical inelastic barrier with a given area that adheres to the underlying cytoskeleton. The tension in the membrane physically affects cell functions and recent studies have highlighted that this physical signal orchestrates complex aspects of trafficking and motility. Despite its undeniable importance, little is known about the mechanisms by which membrane tension regulates cell functions or stimulates signals. The maintenance of membrane tension is also a matter of debate, particularly the nature of the membrane reservoir and trafficking pathways that buffer tension. In this review we discuss the importance of membrane area and of tension as a master integrator of cell functions, particularly for membrane traffic.