Background image mask

LSSS 2014-2015


Life Sciences Seminar Series


Back to seminar list

Tom Pollard

Yale University

Quantitative cellular and molecular approaches to understand the mechanisms of cytokinesis and endocytosis.

Selected Publications

Contractile ring stability in S. pombe depends on F-BAR protein Cdc15p and Bgs1p transport from the Golgi complex.Arasada R, Pollard TD
Cell Rep 2014 Sep 11; 8(5):1533-44


Cdc15p is known to contribute to cytokinesis in fission yeast; however, the protein is not required to assemble the contractile ring of actin and myosin, but it helps to anchor the ring to the plasma membrane. Cdc15p has a lipid-binding F-BAR domain, suggesting that it provides a physical link between the plasma membrane and contractile ring proteins. However, we find that a more important function of Cdc15p during cytokinesis is to help deliver a transmembrane enzyme, Bgs1p (also called Cps1p), from the Golgi apparatus to the plasma membrane, where it appears to anchor the contractile ring. Bgs1p synthesizes the cell wall in the cleavage furrow, but its enzyme activity is not required to anchor the contractile ring. We estimate that ∼ 2,000 Bgs1p molecules are required to anchor the ring. Without Bgs1p anchors, contractile rings slide along the plasma membrane, a phenomenon that depends on an unconventional type II myosin called Myp2p.

Synergies between Aip1p and capping protein subunits (Acp1p and Acp2p) in clathrin-mediated endocytosis and cell polarization in fission yeast.Berro J, Pollard TD
Mol. Biol. Cell 2014 Nov 5; 25(22):3515-27


Aip1p cooperates with actin-depolymerizing factor (ADF)/cofilin to disassemble actin filaments in vitro and in vivo, and is proposed to cap actin filament barbed ends. We address the synergies between Aip1p and the capping protein heterodimer Acp1p/Acp2p during clathrin-mediated endocytosis in fission yeast. Using quantitative microscopy and new methods we have developed for data alignment and analysis, we show that heterodimeric capping protein can replace Aip1p, but Aip1p cannot replace capping protein in endocytic patches. Our quantitative analysis reveals that the actin meshwork is organized radially and is compacted by the cross-linker fimbrin before the endocytic vesicle is released from the plasma membrane. Capping protein and Aip1p help maintain the high density of actin filaments in meshwork by keeping actin filaments close enough for cross-linking. Our experiments also reveal new cellular functions for Acp1p and Acp2p independent of their capping activity. We identified two independent pathways that control polarization of endocytic sites, one depending on acp2(+) and aip1(+) during interphase and the other independent of acp1(+), acp2(+), and aip1(+) during mitosis.

Cytokinetic nodes in fission yeast arise from two distinct types of nodes that merge during interphase.Akamatsu M, Berro J, Pu KM, Tebbs IR, Pollard TD
J. Cell Biol. 2014 Mar 17; 204(6):977-88


We investigated the assembly of cortical nodes that generate the cytokinetic contractile ring in fission yeast. Observations of cells expressing fluorescent fusion proteins revealed two types of interphase nodes. Type 1 nodes containing kinase Cdr1p, kinase Cdr2p, and anillin Mid1p form in the cortex around the nucleus early in G2. Type 2 nodes with protein Blt1p, guanosine triphosphate exchange factor Gef2p, and kinesin Klp8p emerge from contractile ring remnants. Quantitative measurements and computer simulations showed that these two types of nodes come together by a diffuse-and-capture mechanism: type 2 nodes diffuse to the equator and are captured by stationary type 1 nodes. During mitosis, cytokinetic nodes with Mid1p and all of the type 2 node markers incorporate into the contractile ring, whereas type 1 nodes with Cdr1p and Cdr2p follow the separating nuclei before dispersing into the cytoplasm, dependent on septation initiation network signaling. The two types of interphase nodes follow parallel branches of the pathway to prepare nodes for cytokinesis.

No question about exciting questions in cell biology.Pollard TD
PLoS Biol. 2013 Dec; 11(12):e1001734


Although we have a good grasp of many important processes in cell biology, including knowledge of many molecules involved and how they interact with each other, we still do not understand most of the dynamical features that are the essence of living systems. Fortunately, we now have the ability to dissect biological systems in enough detail to understand their dynamics, including the use of mathematical models to account for past observations and predict future experiments. This deep level of mechanistic understanding should be our goal—not simply to satisfy our scientific curiosity, but also to understand the causes of disease well enough to predict risks, make early diagnoses, and treat effectively. Many big questions remain to be answered before we reach this goal of understanding cellular dynamics.

Actin filament severing by cofilin dismantles actin patches and produces mother filaments for new patches.Chen Q, Pollard TD
Curr. Biol. 2013 Jul 8; 23(13):1154-62


Yeast cells depend on Arp2/3 complex to assemble actin filaments at sites of endocytosis, but the source of the initial filaments required to activate Arp2/3 complex is not known.

The obligation for biologists to commit to political advocacy.Pollard TD
Cell 2012 Oct 12; 151(2):239-43


I explain here why all scientists should feel obligated to do their part to support the community by advocating for the benefits of government investments in scientific research and training.